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ABSTRACT 

A cons is ten t  Lagrangian theory for  p a r t i c l e s  i n t e r a c t i n g  through a 

The theory is  non-linear;  t h e  massive tensor  (spin-2) f i e l d  is formulated. 

o r i g i n  of non l i n e a r i t i e s  is  p a r t l y  the  same as i n  t h e  massless E ins t e in  

theory, p a r t l y  can be t raced t o  t h e  inherent f i e l d  dependence of rest mass 

and momenta f o r  tensor in t e rac t ion .  The theory reduces t o  t h e  c o r r e c t ,  

ghos t less  Pauli-Fierz s t r u c t u r e  i n  the l i n e a r  l i m i t  and t o  the  E ins t e in  

theory i n  the  massless case.  

t h e  p rope r t i e s  of high dens i ty  matter i n  s i t u a t i o n s  where the  i n t e r a c t i o n  

mediated through t h e  spin-2 f-mesons is important. 

The formalism is amenable t o  t h e  study of 



I. INTRODUCTION 

I n  t h i s  paper w e  present  a Lagrangian formalism f o r  p a r t i c l e s  i n t e r -  

ac t ing  through a massive tensor  (spin-2) f i e l d .  Our motivation f o r  doing 

t h i s  is twofold. I n  the  f i r s t  place,  t heo r i e s  of i n t e r a c t i o n  of massive 

higher-spin 

t r ea t ed  ca re fu l ly ,  can lead t o  inconsis tent  and unphysical r e s u l t s .  In 

con t r a s t  t o  scalar (spin 0) and vector ( sp in  1) f i e l d s ,  t h e  i n t e r a c t i n g  

massive spin-2 f i e l d  theory is  necessar i ly  a non-linear theory. The non- 

l i n e a r i t y  o r ig ina t e s  from t h e  physical requirement t h a t  a spin-2 f i e l d  be 

coupled t o  t h e  t o t a l  energy-momentum tensor of t h e  system. 

example is t h e  massless spin-2 f i e l d ,  b e t t e r  known as t h e  g r a v i t a t i o n a l  f i e l d .  

The E ins t e in  f i e l d  equations are non-linear, and t h e  non-l inear i ty  is  due t o  

t h e  f a c t  t h a t  t he  source of t h e  g rav i t a t iona l  f i e l d  is t h e  energy-momentum 

tensor  of a l l  f i e l d s  including t h a t  of t h e  g r a v i t a t i o n a l  f i e l d  i t s e l f .  W e  

f i nd  t h a t  t he  problem of construct ing t h e  Lagrangian f o r  an i n t e r a c t i n g  massive 

spin-2 f i e l d  e s s e n t i a l l y  reduces t o  one of adding t o  the  E ins t e in ' s  f i e l d  

equation a (non-linear) mass term tha t  is cons i s t en t  with t h e  cons t r a in t  

conditions that accompany any descr ipt ion of a higher-spin f i e l d .  The p a s t  

i n ~ e s t i g a t i o n s l - ~  t h a t  have focussed on t h e  problem of massive spin-2 f i e l d  

e i t h e r  ( i )  have ignored the  problem of including t h e  non-linear s e l f -  

i n t e r a c t i o n  terms of ( i i )  have not  s e t  up t h e  mass term cor rec t ly .  

f i e l d s  pose c e r t a i n  basic  problems of t h e i r  own which, i f  no t  

An i l l u s t r a t i v e  

. 

Our second motivation relates t o  as t rophys ica l  considerat ions.  To  be 

spec i f i c ,  i n t e r e s t  i n  pulsars  and the  behavior of matter a t  extremely high 

d e n s i t i e s  have led  t o  an increasing a t t e n t i o n  t o  t h e  many-body problem of 

r e l a t i v i s t i c  neutron systems. When matter d e n s i t i e s  are higher than t h e  

nuclear  matter densi ty ,  short-range forces  a r i s i n g  from the  exchange of spin-2 
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f o  meson (1260 MeV) are expected t o  be non-negligible. The formalism that 

w e  develop i n  t h i s  paper is used i n  t h e  following paper t o  der ive  a theory 

of r e l a t i v i s t i c  neutrons in t e rac t ing  through a f in i te - range  spin-2 f i e l d  

( i n  add i t ion  t o  scalar and vector  f i e l d s ) .  

is  found t o  possess several novel fea tures  t h a t  are due t o  t h e  spin-2 

in t e rac t ion .  The preliminary appl icat ions of these  r e s u l t s  i n  r e l a t i o n  

t o  the bulk proper t ies  of a neutron star have been reported by u s  i n  an 

earlier paper. 

The r e s u l t i n g  equation of state 

8 

The o u t l i n e  of t h i s  paper is as follows. I n  Sect ion I1 w e  k r i e f l y  

review t h e  proper t ies  of a f r e e  spin-2 f i e l d  and recall t h a t  even f o r  a 

f r e e  spin-2 f i e l d ,  t he re  is a d e f i n i t e  allowed form f o r  t h e  m a s s  term t h a t  

is cons is ten t  with t h e  cons t r a in t  conditions on t h e  f i e l d .  Sect ion I11 

descr ibes  t h e  problems associated w i t h  a theory of i n t e r a c t i n g  massive 

spin-2 f i e l d ,  and how w e  proceed t o  set up a Consistent formalism f o r  it. 

The de r iva t ion  of t h e  f u l l  Lagrangian is presented i n  Sect ion I V .  

d i scusses  t h e  problem of subsidiary condition i n  t h e  non-linear theory and 

Sect ion V 

Sect ion V I  the  s t r u c t u r e  of t he  source t e r m  i n  a classical s i tua t ion .  Sub- 

sequent papers w i l l  dea l  with t h e  Hartree-approximation both f o r  a high 

temperature gas of classical p a r t i c l e s  and f o r  a zero temperature degenerate 

gas of fermions in t e rac t ing  through a spin-2 ( tensor )  f i e l d .  



11. THE FREE SPIN-2 FIELD 

A massive spin-2 f i e l d  is described by a symmetric "tensor-potential" 

. Such a tensor  f i e l d  h a s  t e n  l i n e a r l y  independent components 
+llV 

of rank two, 

and i n  general  is a mixture of f i e l d s  corresponding t o  i r r educ ib l e  represen- 

t a t i o n s  of spin-2, spin-1 and two spin-0 components. It  w i l l  descr ibe  a 

spin-2 f i e l d  only after we have removed t h e  ( 3  + 1) - component vec tor  

cont r ibu t ion  (a'@ ) and t h e  scalar contr ibut ion ( t r  4 ) by imposing t h e  
uv w 

following cons t ra in t  conditions:  

= diag. (-1, 1, 1, l).) When t h e  cons t ra in t  condi t ions(2.1)  and (2.2) are 
(npV 

s a t i s f i e d ,  t h e  r e s idua l  f i v e  components w i l l  descr ibe  a pure spin-2 f i e l d .  

As long as $ represents  a f r e e  f i e l d  ( i .e .  not  i n  i n t e r a c t i o n  wi th  

o the r  f i e l d s ) ,  a Lagrangian quadrat ic  i n  t h e  f i e l d  v a r i a b l e  and i t s  deriva- 

tives can be constructed t h a t  gives  the cons t r a in t  condi t ions (2.1) and (2.2), and 

provides a l i n e a r  equation of motion. 

having such proper t ies  have been devised by Rivers' and Nath . 
Watanabe 

'V 

Single-parameter Lagrange funct ions 

3 Bhargava and 

5 have formulated a 3-parameter Lagrange func t ion  from which they 

derived t h e  f i e l d  equation, the cons t ra in t  condi t ions and a l s o  the  condi t ion 

t h a t  t h e  f i e l d  va r i ab le  be symmetric i n  its indices .  P re sc r ip t ion  f o r  

construct ing t h e  generalized Lagrange funct ion f o r  a f r e e  system wi th  a r b i t r a r y  

. sp in  has a l s o  been given by Char$' who used t h e  method of sp in  pro jec t ion  

operators  introduced by Fronsdal. 11 
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The s implest  form o f t h e  linear f r e e  f i e l d  equations f o r  t h e  massive 

(mass p) spin-2 f i e l d  4 from which t h e  cons t r a in t  condi t ions (2.1) and 

(2.2) follow, can be wr i t t en  as follows: 
VV , 

where 

and 

Conditions (2.1) and (2.2) now follow from t h e  dynamics of t h e  theory. The 

divergence and trace of Eq. (2.3) provide, respec t ive ly  

and 



c . 

. whose combinations are e a s i l y  seen t o  y ie ld  (2.1) and (2.2). For t h i s ,  

however, t h e  m a s s  term i n  t h e  Lagrangian must be  of t h e  form as appearing 

i n  Eq. (2.5) namely, 

(2; 8 )  

T h i s  is usua l ly  r e fe r r ed  t o  as the Pauli-Fierz Lagrangian f o r  t h e  spin-2 

It is easy t o  v e r i f y  t h a t  with o ther  choices f o r  t h e  mass term, 

one cannot r e t a i n  t h e  conditions (2.1) and (2.2) simultaneously, Thus, 

without t h e  Pauli-Fierz form of t h e  mass term, the re  w i l l  be admixtures of 

lower s p i n  states which may g ive  rise t o  negative-energy ghosts.  
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111. THE INTERACTING SPIN-2 FIELD 

The  l i n e a r  massless spin-2 f i e l d  must be coupled t o  a conserved syrmnetric 

tensor ,  which is iden t i f i ed  wi th  t h e  energy-momentum tensor  of t h e  matter f i e l d ,  

t This requirement is  a consequence of t h e  i d e n t i t y  
W. 

and t h e  r e s u l t i n g  equation is 

where K charac te r izes  

= -K t (3.2) 
%U lJv 

u w 

t h e  s t rength  of t h e  s p i n d y f  ield-matter-f i e l d  coupling. 

The corresponding Lagrangian now can be w r i t t e n  as 

(3.3) 

It is  well-known, however, t h a t  t h i s  coupling scheme, as it  s tands,  is 

incons is ten t :  t 

+ f i e ld  o n  t h e  matter f i e l d  is  negl igible;  otherwise 2” t 

is conserved only t o  t h e  ex ten t  t h a t  t h e  e f f e c t  of t he  w 
= 0 is replaced w 

by 

where T 

t o  fol low from t h e  Lagrangian, t h e  latter has t o  be modified. The r e s u l t  of 

t h i s  procedure, as shown by Gupta, Kraichnan, Wyss, Deser, and others:4 is  

is t h e  energy-momentum tensor of t h e  9-f i e ld .  For this r e l a t i o n s h i p  
VV 

p rec i se ly  the  non-linear Einstein-equation, 



A;($) = bp + 0 ($2) 
1.I 

The d e t a i l s  of t h i s  and t h e  o r i g i n  of the  A '(I$) coe f f i c i en t  w i l l  be 

discussed i n  t h e  next sec t ion .  I n  a more conventional no ta t ion  (3.5) is 

equivalent  t o  

1.I 

K 2  
Gllv($) = - - 2 tl.lv 

and 

Even though t h e  equations have t h e i r  well-known geometric i n t e r p r e t a t i o n s ,  

we wish to avoid emphasizing t h a t  aspect; 

defined by (3.7); correspondingly we d i s t ingu i sh  between g 

huv (not g"), 

here  is merely an abbrevia t ion  

and i t s  inverse  

% 
vv 

-- - 0 is the  f ami l i a r  The Lagrangian t h a t  generates  (3.6) through /m 6hVv 
Eins t e in  Lagrangian ( the  nota t ion  f is intended t o  under l ine  t h e  d i f f e rence  

between the  quadrat ic  ( l inear ized)  Lagrangians L(4) and the  f u l l  non-linear 

Lagrangians f ( g ) ) ,  combined with the  i n t e r a c t i o n  Lagrangian: 
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(3.8) 

Now, turning t o  t h e  problem of the coupling of t he  massive spin-2 f i e l d  

t o  t h e  m a t t e r  f i e l d ,  w e  observe t h a t  with a source s 
PV 

Ft t he re  is no need t o  requi re  t h a t  2 s = 0; taking t h e  divergence of (3.9) 
lJv 

merely r e s u l t s  i n  

(3.10) 

Taking t h e  trace of (3.9) and subs t i t u t ing  (3.6) i n  t h e  r e s u l t i n g  equation, 

generates t h e  subs id ia ry  conditions 

(3.11) 

Thus, it appears t h a t  i n  con t r a s t  t o  the massless spin-2 theory,  i t  is poss ib l e  

t o  cons t ruc t  a l i n e a r ,  massive spin-2 theory, without running 

inconsis tencies  (by choosing, f o r  example, 

i n t o  manifest  

(3.12) 

i.e. t h e  energyinomentum tensor of the non-interacting f i e l d ,  as t h e  source) .  

There are, however, a t  least two d i f f i c u l t i e s  with t h i s  approach. (i) even 

though the re  a r e  no manifest inconsis tencies  i n  t h e  theory,  it is not  evident  

a t  a l l  t h a t  reasonable so lu t ions  of t h e  f i e l d  equations combined with t h e  

equation of motion f o r  t h e  p a r t i c l e s  can ’be obtained without v i o l a t i n g  t h e  
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subs id ia ry  conditions (3.11). (ii) The theory doesn' t  have any smooth 

l i m i t  f o r  ~ 4 :  t he  massive source term s i s  completely d i f f e r e n t  from !Jv 
the  massless AP(t + T ) source. 

IJ PV PV 

The philosophy we  adopt i n  the  present paper is d i f f e r e n t .  W e  w i l l  

r equ i r e  t h a t  t he  theory, on t h e  one hand, be a "smooth" cont inuat ion of 

t h e  massless Einstein-theory, ( i n  t h e  r e s t r i c t e d  sense  t h a t  i n  t h e  p = 0 

l i m i t  t h e  Eins te in  f i e l d  equations a re  recovered) and t h a t ,  on the  o ther  

hand, i n  t h e  l i n e a r  l i m i t  it reduce to t h e  co r rec t  Pauli-Fierz formalism 

of massive spin-2 f i e l d s .  

t h e  E ins t e in  equation. 

zero m a s s  is non-linear, there  is  no a p r i o r i  reason t o  expect t h i s  mass 

Thus w e  add a mass term, say % p2 Hllv($), t o  

W e  no te  t h a t  s ince the  f u l l y  i n t e r a c t i n g  theory with 

term t o  be l i nea r .  Moreover, i n  t he  non-linear theory t h e r e  e x i s t s  no 

equivalent  of t h e  Pauli-Fierz mass c r i t e r i o n  t o  se rve  as a guide f o r  s e t t i n g  

up t h e  m a s s  term. Since,  however, the mass implies a f i n i t e  range o r  an 

asymptotic fa l l -of f  of t h e  fo rces ,  we shall t ake  H 

f i e l d  der iva t ives .  

t o  be independent of 
IJV 

Thus, t he  equation of motion of t he  massive spin-2 f i e l d  

w i l l  now have the  form: 

-- " - o now is  1 
The corresponding Lagrangian t h a t  generates (3.13) through 

JXf 'gPV 

(3.14) 

where f(M) denotes t h e  massive p a r t  of t h e  Lagrangian. should be  independent 

of f i e l d  der iva t ives ,  and its va r i a t ion  with r e spec t  t o  the  f i e l d  w i l l  g ive  

% HVv ( t h e  5 f a c t o r  is  inser ted  f o r  convenience). 
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A t  t h i s  point,  it is important t o  no te  the  e s s e n t i a l  d i f fe rence  between 

the  massless and massive theories .  

and, unl ike the  massless case,  t he  massive theory doesn' t  lend i t s e l f  t o  a 

(Riemannian) geometric in te rpre ta t ion .  As f a r  a s  t h e  dynamics is concerned, 

however, w e  may draw analogies with the g rav i t a t iona l  case, although such 

analogies must be considered as  purely formal. 

formalism w i l l  be taken to i nd ica t e  Lorentz indices .  As w e  have pointed out 

already, we s h a l l  introduce d i f f e r e n t  symbols f o r  t he  "metric" (glJv) and i t s  

inverse (h") . 
using t h e  Minkowski tensor TI and not h or guv. W e  w i l l  a l s o  introduce 

The mass breaks the  gauge invariance 

A l l  ind ices  i n  the  present  

Raising or lowering of indices  w i l l  be performed s o l e l y  by 

W 
vv ? 

W e  already have 

- I.lv l g /  = d e t  g = (det h")-' = de t  g 
!Jv 

- uv - c- minor g - 
a 

Analogously, we def ine  qVv by 

-w = #V + p v  
g 

Then, i n  the small f i e l d  l i m i t  

-w I: +FIv r; % 17w + 4 

(3.15) 

(3.16a) 

(3.16b) 

( 3 . 1 6 ~ )  
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(3.16d) 

There is  no a p r i o r i  preference,  a t  t h i s  po in t ,  as t o  which of these  q u a n t i t i e s  

is more appropriate  t o  charac te r ize  the physical  f i e l d .  

To conclude t h i s  sec t ion ,  we  mention earlier works aimed a t  construct ing 

a general  theory of an in t e rac t ing  massive spin-2 f i e l d .  

Polubarinov4 have constructed Lagrangians , character ized by two parameters 

p and q, t h a t  lead t o  t h e  subs id ia ry  condition 

Ogievetsky and 

instead of (2.1) and (2.2). Their source term, however, is not t h e  t o t a l  stress 

tensor  8 but  r a t h e r  
WJ 

The physical i n t e rp re t a t ion  of such a source term is  unclear: Besides, t h e  

massive p a r t  of the Lagrangian does not possess t h e  required Pauli-Fierz 

c r i t e r i o n .  Freund e t  al.,” whose approach is  most s i m i l a r  t o  ours ,  have 

proposed a massive vers ion of Einstein’s  g rav i t a t iona l  equations; however, 

t h e i r  theory a l s o  s u f f e r s  from t he  non-compliance wi th  t h e  Pauli-Fierz l i m i t  

for, t h e  mass term, and as such, i t  is  a l s o  unsa t i s fac tory  i n  t h e  l i n e a r  l i m i t ,  

I n  a d i f f e r e n t  context Salam and Strahdee16 discussed t h e  Lagrangian f o r  t h e  

combination of Yang-Mills and tensor  f i e l d s .  
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I V .  DERIVATION OF THE LAGRANGIAN 

To ob ta in  t h e  massive p a r t  of the Lagrangian f o r  t h e  l i n e a r  Pauli-Fierz 

Lagrangian w e  follow t h e  same path tha t  leads  t o  t h e  Eins te in  Lagrangian 

from t h e  l inear ized  L(L). 

now enumerated. 

The pr inc ipa l  milestones 14'15 along t h i s  path are 

1) The "mixed" "tensor-density" is i d e n t i f i e d  as t h e  representa t ion  

where t h e  o r i g i n  of non-linearity i s  manifest: 

with 

obtained from (2.3) with t h e  subs t i t u t ion  (3.16b) and ( 3 . 1 6 ~ ) .  

2) T:, t h e  canonical stress tensor d e n s i t y , i s  

(4.3) 

where sa is t h e  symmetrizing Bel i fante  term: 

of t h e  f i e l d  only and i ts  de ta i l ed  s t ruc tu re  is  of no relevance f o r  our 

it depends on t h e  de r iva t ives  
B 
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purpose. 

huB -representat ion t o  2’ -representation is  ef fec ted  with t h e  a i d  of t h e  

7 is  t h e  operator defined by (4.3).  The transformation from t h e  
B 

and t h e  source t are derived from t h e  v a r i a t i o n  of t h e  3, GaB aB 
Lagrangian L = 1 ( L  (E) + K2 L ( 1 ) )  

4) As a r e s u l t ,  the Eins te in  equation can be  put i n  t h e  form 

with t h e  Lagrangian s a t i s f y i n g  t h e  d i f f e r e n t i a l  equation 

* The massive term is now t o  be character ized by t h e  add i t iona l  t e r m  in t h e  

[I = -$ (LE + p2L(M) + K~ f(’) , and t h e  add i t iona l  term )I Lagrangian L (M) 

i n  t he  equation of motion, 

now lead t o  the  following s teps .  

BaB. 
The equivalents  of (1) through (4) above 

1) The massive contr ibut ion H is s p l i t  i n t o  t h e  l i n e a r  p a r t  p lus  
UB 

t he  massive sfress tensor density:  



1 4  

with 

(4 .9 )  

H -(L)aY = f a y  (EP0 

Fay = 6; 6; + % 

$0) 
P O  

- 
PO PO 

obtained from (2.3) with t h e  subs t i t u t ion  (3.16b) and ( 3 . 1 6 ~ ) .  

2) v2T(M)a , t h e  canonical massive stress tensor  dens i ty  is  given by B 

is derived from the  va r i a t ion  of the  massive 3, 

1 dM) 1 aL(*) = - - = - -  ' q q  Jm ahaB 

(4 .10)  

Lagrangian, 

(4 .11)  

4 )  The f u l l  massive f i e l d  equation can now be put i n  the  form 

= - K~ (Ti i hay t ) 
YB 

=a - - (E)a v2 T(M)a 
B B Tg - T 

with the  massive Lagrangian sa t i s fy ing  t h e  d i f f e r e n t i a l  equation 

- (MI j 3 Y  (EP0 - +! L hay aL (MI - 
ahYB ney Po 8 

. or, using (4 .4 )  and (4.9) 

(4 .12 )  

(4y13)  

For reasons t o  be explained below, we genera l ize  (4 .12) ,  by allowing f o r  

the  massive p a r t  of the  s t r e s s  tensor t o  ca r ry  an add i t iona l  weight,  say 2, 
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- leading t o  t h e  replacment of t h e  t o t a l  f i e l d  stress tensor  dens i ty  as 

and r e s u l t i n g  i n  

(4.15) 

(MI as t h e  bas i c  equation f o r  t h e  determination of L . 
I n  p r inc ip l e ,  L(M), which does not depend on t h e  de r iva t ives  of t h e  

f i e l d ,  can depend on any invar ian t  t ha t  w e  can construct  out  of t he  f i e l d  

components. As noted by Freud e t  a1.,15 one such inva r i an t  is  p 5 dm ; 

should L(M) depend only p, then Eq. (4.16) could not  be obeyed (because of 

the  presence of t h e  term E"); i n  addi t ion t o  p, L(M) has  t o  depend on a t  

least one more Lorentz-invariant quantity: t h e  s implest  such quant i ty  i s  

g trip" = rl g'". W e  s h a l l  thus assume t h a t  L(M) depends on iuv only 

through t h e  invar ian t  combinations p and E. 

B 

- 
I.lv 

Noting t h a t  

ap= aEVv gvv 

w 
and consequently 

(4.17) 

(4.18) 
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we have 

(4.19) 

By using (4.16) we f u r t h e r  ob ta in  

(4.20) 

a 
B 

For Eq. (4.20) t o  have a so lu t ion  t h e  c o e f f i c i e n t s  of both 6 and 

Ea have t o  vanish. The la t te r  requirement y i e l d s  8 

- 
f(M) = 4 g + K(p) 

where R(p) is still  t o  be  determined. (4.21) combinec. wi th  ( .  

(4.21) 

.20) leads  t o  

(4.22) -3 + (1 - $(I + 2)) - (1 + Z) K(p) + p P = O  dK( 1 
dP 

(4.22) is cons is ten t  only i f  t he  coef f ic ien t  of is  0,  y ie ld ing  

(4.23) z = 1' 

A t  t h i s  point  t he  j u s t i f i c a t i o n  of introducing t h e  renormalized weight 

(1 + z) emerges, 

On t h e ' o t h e r  hand, t h e  choice z = 1, s igni fy ing  i n  e f f e c t  t h a t  t h e  massive 

W e  see t h a t  t h e  naive choice z = 0 leads  t o  incons is tenc ies .  

p a r t  of t h e  f i e l d  energy-momentum couples wi th  a double s t rength  t o  the  f i e l d  

i t s e l f ,  generates a pe r fec t ly  reasonable solut ion:  i n  p a r t i c u l a r ,  t he  l i n e a r  

l i m i t  has the  physical ly  required Pauli-Fierz form. Apart from t h e  consistency 

requirement w e  cannot; a t  t h i s  po in t ,  provide an i n t u i t i v e l y  simple explanation 

of t h e  doubling e f f e c t  - although we suspect t h e  ex is tence  of a simple phys ica l  

p ic ture .  
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Returning now t (4.221, i ts  so lu t ion  wit. .  z = 1 is  immediate: 

(4.24) 

The constant  of in tegra t ion ,  k, can be fixed by requi r ing  t h a t  a t  Ea’= qa’ a t  

L(M) = 0. This way w e  f i n d  k = - % and 

L(M) = 4 (E + lg l  - 3) (4.25) 

It is perhaps more i l luminat ing (and more pleasing) t o  r e w r i t e  (4.25) as 

The r e s u l t i n g  massive term i n  t h e  f i e l d  equation (3.13) is ca lcu la ted  from 

(4.25) with t h e  a id  of (4.11) o r  (4 .8 ) ,  o(4.9) and (4 .10 ) :  

(4.27) 



V. THE SUBSIDIARY CONDITION 

I n  t h i s  sec t ion  we descr ibe and discuss  the  subs id ia ry  condi t ions of t h e  

nonlinear theory. It is  convenient t o  use (4.12) combined with (4.15) as a 

s t a r t i n g  point.  Taking t h e  divergence of t h e  combined equation, one f inds ,  

W e  no te  t h a t  i n  t h e  l i n e a r  theory 

(5.3) 

and t h e  divergence condition reduces t o  t h e  f ami l i a r  (2.6), i r r e s p e c t i v e  of t h e  

va lue  of z. z = 0 would leave t h i s  l i n e a r  condi t ion unal tered.  With t h e  required 

z = 1 conditions observed, however, (5.1) becomes 

a$''' - + av(gl  = o (5.4) 

(5.4), even though it cons i tu tes  a set of non-linear d i f f e r e n t i a l  equat ions,  

is not subs t an t i a l ly  d i f f e r e n t  from (5.2) and can serve t o  e l imina te  4 degrees 

of freedom. 

Turning now t o  t h e  trace condition 

one observes t h a t  by using (5.4), (5.5) can be rewr i t ten  as 
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za'(E + lg l )  + v2{2zlgl + (22 - 3)g + 6 ( z  - 2)) = - K*(T + f*) (5 .6 )  

Again, i n  t h e  l i n e a r  l i m i t  one recovers t h e  condi t ion (2.7) which remains 

unal tered f o r  2 = 0. However, f o r  z = 1 one obta ins  

Thus, because of t h e  appearance of the  second order time de r iva t ive ,  (5 .7 )  

ceases t o  be  a cons t ra in t  condi t ion on t h e  f u l l  non-linear theory,  and the  

6 t h  degree of freedom remains inextr icably coupled t o  t h e  5 spin-2 degrees. . 
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I n  order t o  exhib i t  t h e  d e t a i l s  of t h e  way t h e  spin-2 f i e l d  couples 

t o  t h e  matter-f ie ld ,  we discuss  i n  t h i s  s ec t ion  t h e  s t r u c t u r e  of t h e  classical 

stress tensor  t h a t  appears as t h e  source i n  Eq. (4.12). The aspects  of t h e  

quantum s i t u a t i o n  where a matter f i e l d  is coupled t o  t h e  spin-2 f i e l d  

w i l l  be discussed i n  a separate  paper. 

The source t e r m  i n  (4.12) , say - K~ 

= -  

I n  t h e  choice of L(’) w e  are 

Yf3 
K 2  a h a y  t 

guided again by 

and set 

;*’ , can be  expressed with 
V 

t h e  general  re la t ivis t ic  analogy, 

- S(T))dT (6.2) 

0 H e r e  m is t h e  mass of the  source par t ic le ,  E(T) i t s  t r a j e c t o r y  and u = dSa/d-r. 

The source term thus becomes 

a -  u = ua(x) is  now t o  be understood as a hydrodynamic va r i ab le ,  v = v(x) is  

the  inva r i an t  densi ty  
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. and M 

can be in t e rp re t ed  as the  va r i ab le  rest mass. 

by the  generalized Lagrangian formalism f o r  r e l a t i v i s t i c  p a r t i c l e s .  l7 Writing 

L ( 1 )  i n  t h e  form 

This i n t e r p r e t a t i o n  is suggested 

II t h e  v a r i a b l e  rest mass is given by 

leading indeed t o  (6.5). 

The (canonical)  p a r t i c l e  momentum is, i n  t h e  same formalism, 

which allows one t o  write (6.3) i n  the form 

p 

of the  p a r t i c l e  through 

so defined now has t h e  property that  i t  generates  t he  equation of motion 
lJ 

A=- dp a/\ 
dT axp 

(6.10) 



This is ,  of course, only an a l t e r n a t i v e  expression of t h e  general  energy- 

momentum conservation a (T: + ;*'') = 0. 
1-1 

It is i n s t r u c t i v e  t o  consider t he  l i nea r i zed  vers ions of t h e  r e l a t i o n s  

derived i n  t h i s  sec t ion .  (6.2) becomes 

(6.11) 

which represents  t h e  most na tu ra l  coupling scheme f o r  a linear tensor  f i e l d .  

The l i nea r i zed  equivalents  of (6.5) and (6.7) are 17 

(6.12) 

W e  observe t h a t  by introducing the  new f i e l d  v a r i a b l e  @'" through t h e  re-scaling 

where f i s  t h e  "charge" associated 

motion takes a more fami l ia r  form; @" now plays t h e  r o l e  of the  tensor- 

po ten t i a l .  

with t h e  tensor  f i e l d ,  t h e  equation of 

I n  t h e  f i e l d  equation t h e  i d e n t i f i c a t i o n  

f2 
K~ = 16 IT - 

m2 
(6.14) 

is  necessary t o  arrive a t  t h e  genera l iza t ion  of t h e  customary'structure.  

The important conclusion emerging f r o m  t h i s  s ec t ion  is t h a t  i n  addi t ion  

t o  the  manifest non- l inear i t ies  of the f i e l d  equation, f u r t h e r  non- l inear i t ies  

appear through t h e  imp l i c i t  g dependence of t h e  source term, which i n  turn ,  

can be t raced t o  t h e  f i e l d  dependence of t h e  p a r t i c l e  rest m a s s  and momenta. 
I.lv 
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A f u r t h e r  conclusion, which w i l l  be  exploited in a subsequent paper, is t h a t  

i n  t h e  case t h e  in t e rac t ion  is mediated by scalar, vec tor ,  etc., p a r t i c l e s  

i n  add i t ion  t o  t h e  spin-2 mesons, t h e  coupling through t h e  energy momentum 

tensor  r equ i r e s  a "universal" coupling of t h e  spin-2 f i e l d  t o  t h e  o ther  

( sca l a r ,  vector ,  etc.) f i e l d s  with the  s a m e  coupling s t r eng th  as f r e e  matter. 

This,  and t h e  implicat ion of such a theory on t h e  th ree  fundamental tests of 

r e l a t i v i t y ,  are being s tudied.  

, 
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V I I .  CONCLUSIONS 

I n  t h i s  paper w e  have constructed a Lagrangian theory of p a r t i c l e s  

i n t e rac t ing  through a massive spin-2 (tensor) f i e l d .  The Lagrangian and t h e  

f i e l d  equation are found t o  be non-linear, t h e  non-linearity being p r inc ipa l ly  

t h e  manifestat ion of t h e  dynamical requirement t h a t  t h e  spin-2 f i e l d  couple 

t o  t h e  t o t a l  energy-momentum tensor of t h e  system. 

implies t h a t  t h e  spin-2 f i e l d  should couple t o  a l l  o ther  f i e l d s  with a universa l  

coupling s t rength.  W e  po in t  out that t h e  dynamics of t h e  f u l l  non-linear theory 

d i c t a t e s  t h a t  an ex t r a  "ghostlike" sca la r  degree of freedom always accompany 

This a t  t h e  s a m e  t i m e ,  

' t h e  spin-2 f i e l d .  However, t h i s  does not  necessar i ly  lead t o  t h e  energy being 

unbounded from below (as  t o  be demonstrated i n  t h e  subsequent papers).  

main m e r i t  of t h e  theory presented here is t h a t  i n  t h e  l i m i t  of weak coupling, 

where one i s  i n  a pos i t i on  t o  make d e f i n i t i v e  statements about t he  exc i t a t ions  

and about t h e  boundedness of t h e  energy, a l l  spurious exc i t a t ions  w e  avoided, 

and t h e  formalism is  f u l l y  cons is ten t  with t h e  cons t r a in t s  on t h e  f i e l d  var iab les .  

This is a minimum requirement f o r  any cons is ten t  i n t e r a c t i n g  massive spin-2 

theory, and i n  t h i s  respec t  our r e s u l t s  represent  t h e  f i r s t  s a t i s f a c t o r y  

formulation of such a theory. This i s  a departure  from a l l  previous formulations;  

these  la t ter  do not comply with t h e  Pauli-Fierz c r i t e r i o n ,  and so remain unsa t i s -  

f ac to ry  even a t  t h e  l i m i t  of weak coupling. 

The 

Our f i e l d  equations bear obvious s i m i l a r i t y  t o  t h e  Eins te in  g r a v i t a t i o n a l  

equations. However, t h e  m a s s  term has no r e l a t ionsh ip  t o  t h e  cosmological t e r m  

of t h e  Eins te in  theory. 

v i o l a t e s  t h e  equivalence pr inc ip le ,  and hence no "general covariance" is implied 

by it; ne i the r  is it  devoid of a l l  the d i f f i c u l t i e s  plaguing " f i n i t e  range" 

g rav i t a t iona l  t heo r i e s  . I 3  

I f  viewed as a theory of g r a v i t a t i o n  t h e  theory thus  

Nevertheless, i n  view of t h e  problems t h a t  are 
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associated with quantizing Eins te in ' s  theory, one may question the  requirement 

of general  covariance. I n  t h a t  case,  t he  present  formalism can be viewed from 

the  point  of s e t t i n g  up an acceptable theory of a f ini te-range g rav i t a t ion .  

The cosmological ramif icat ions of such an attempt,  however, remain t o  be 

seen. 

, 
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